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Abstract Matched field processing (MFP) provides a means of attaining the full
gains available from the shallow-water acoustic channel in passive sonar signal
processing. By modeling the full field structure of acoustic signals propagating in
the ocean, MFP offers the potential for both detection gain (through its better signal
model) and localization gain (through its additional discrimination capability in range
and depth) over traditional planewave processing. However, high spatial ambiguities
and mismatch present formidable challenges in practice, limiting the performance
gains that are realistically achievable with MFP.

Prediction of MFP localization performance is a challenging problem. MFP replica
(steering) vectors can be highly ambiguous in range and depth, resulting in
significant non-local estimation errors at low signal-to-noise ratios (SNRs)-errors
not modeled by traditional localization measures such as the Cramer-Rao bound.
Recent work has demonstrated the accuracy of an interval-error-based method,
referred to herein as the "method of interval errors" (MIE), in predicting mean-
squared error localization performance well into the threshold region where
non-local errors may dominate.

This work uses the MIE to predict the mean-squared error accuracy of MFP range
and depth estimates for two well-known approaches: (i) conventional beamforming
(equivalent to maximum likelihood estimation for white noise) and (ii) Capon-MVDR
adaptive beamforming. Simulation results will characterize localization performance
as a function of SNR, for apertures and environments of interest. Particular attention
will be given to the "threshold SNR" (below which localization performance degrades
rapidly due to global estimation errors) and to the minimum SNR required to achieve
acceptable range/depth localization. Initial work will also be presented assessing
the MIE's potential to characterize localization performance in the presence of
mismatch.
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THRESHOLD REGION PERFORMANCE PREDICTION FOR ADAPTIVE MATCHED

FIELD PROCESSING LOCALIZATION

Nigel Lee, Christ D. Richmond

MIT Lincoln Laboratory
Advanced Sensor Techniques Group
nigel@ll.mit.edu, christ@ll.mit.edu

ABSTRACT which are often signficant in the range and depth dimen-
sions, can cause large localization errors at low signal-to-

The full-field modeling of matched field processing (MFP) noise ratios (SNR's). Localization is defined here as esti-
provides potentially large gains over traditional beamform- mation of a source location parameter (e.g., source range,
ers in passive sonar signal processing. MFP localization depth, or bearing) by maximizing beamformer output over
gains are manifested by superior estimation of source range the parameter search space. Localization error is defined as
and novel estimation of source depth. However, MFP local- the physical distance between the estimated parameter value
ization is limited in practice by high spatial ambiguities in and the true parameter value, quantified here in a mean-
the MFP output. These ambiguities can result in global lo- ( 2}

calization errors at low signal-to-noise ratios, errors which squared sense: E j - Oruej , where 9 is the estimate

must be accounted for to predict MFP localization perfor- of the true parameter 0true , and where E is expectation.
mance accurately. This work uses the so-called method of
interval errors (MIE) to predict MFP mean-squared error For example, consider the MFP range-depth beampat-

localization performance well into the "threshold region" tern shown in Fig. 1, for source location 6 km range and

where global errors dominate. New results enable highly 25 m depth. At high SNR's, range/depth estimates for the

accurate threshold region MIE predictions for both conven- source will likely fall within the "local error" region sur-

tional beamforming and Capon-MVDR adaptive beamform- rounding mainlobe of the beampattern. As SNR decreases,

ing in the simple signal-in-white-noise case. A variation however, sidelobe ambiguities become more likley to cause

of the standard MIE technique is shown to produce equally global errors, where the source is localized outside the beam-

accurate performance predictions when both mismatch and pattern mainlobe. Several potential global error regions are

colored noise are introduced, marked in the Fig. 1.

1. INTRODUCTION 0 0

Matched field processing (MFP) provides a means of attain- 20 - -1
ing the full gains available from the shallow-water acous-

- I •r truelource
tic channel in passive sonar signal processing. By model- E40 global locat 2
ing the full field structure of acoustic signals propagating - error k Fi
in the ocean, MFP offers the potential for both detection 060 r e ion3
gain (through its better signal model) and localization gain I

(through its superior estimation of source range and novel 80 -4
estimation of source depth) over traditional planewave and
range-focused beamforming. 100 -5

MFP localization performance is limited in practice by 2 4 Rangg(km) 8 10

high redundancy in the MFP steering vectors, which results
in spatial ambiguities in MFP output. These ambiguities, Figure 1: MFP range-depth beampattern for a horizontal

line array (length 600 m) at endfire, A/2 spacing at fre-
This work was sponsored by DARPA-ATO under Air Force Contract quency 50 Hz. Environment is off the southern California

F19628-00-C-0002. Opnions, interpretations, conclusions, and recommen- coast. True source location is 6 km range and 25 m depth.
dations are those of the authors and are not necessarily endorsed by the U.S.
Government. Grey scale units are dB (relative to peak).



Mean-squared error performance curves are typically char- maximum likelihood estimation in white noise with known
acterized by three distinct (SNR) "regions" of performance, data covariances [1, 8]. The approach taken here is to ap-
as depicted in Fig. 2: the asymptotic region in which lo- ply new results [4] to an established technique [5], referred
cal errors dominate and MSE is proportional to log(SNR); to herein as the method of interval errors (MIE), to en-
the threshold region, in which global errors dominate and able accurate threshold region MFP performance prediction
MSE rises rapidly as SNR decreases; and the no informa- for two popular beamformers in passive sonar, the adaptive
tion region, in which the signal is below the noise and lo- Capon-MVDR (CAP) beamformer and the non-adaptive con-
cation estimates are essentially uniformly distributed. Two ventional beamformer (CBF). Section 2 describes MIE and
important SNR's of interest are the threshold SNR, below the new results that enable its use for CAP and CBF. Sec-
which global errors become significant, and the required tion 3 presents some simulation results demonstrating the
SNR, the SNR that is needed to achieve minimum accept- accuracy of this approach for threshold region performance
able MSE performance. These SNR's are important for sys- prediction and also describes a new procedure to extend
tem design, as will be described below. For matched field the MIE framework to include both signal model mismatch
processing, acceptable performance boundaries often occur and colored noise. Section 4 concludes by summarizing the
within the threshold region, meaning that accurate thresh- findings of this work.
old region performance prediction is vital to understanding
what SNR's are truly required for acceptable MFP localiza- 2. APPROACH
tion. Ignoring global errors for a local error bound such as

2.1. Framework

30 - Aea This work assumes a stochastic signal model, as is com-
Performance monly adopted in passive sonar. Data snapshots x are as-

-020 sumed to be zero-mean, complex-Gaussian: x -,' Cr (0, R)
sga is o-2vv 8 +o,2 R ,where v, is the true

vector, ois the signal power, o, is the noise power,U)10 "
10and R. is the noise covariance, normalized so that its trace

0 eqIe ple 12 and o,2/o, is the phone-level SNR. The sam-Re-quire
SN I o pie covariance matrix R is then formed in the usual way:

I Threshold L
-_NR R=, where L is the number of snapshots.-101 ' sN j l E xkxk

-40 -21N dO 20 k=1

2%NR (dB? This analysis focuses on estimators that are derived from

two popular beamformers in passive sonar, the adaptive Capon-
Figure 2: Typical mean-squared error (MSE) performance MVDR (CAP) beamformer and the non-adaptive conven-
vs. phone-level SNR. Asymptotic region is all SNR's above tional beamformer (CBF). Each estimate is obtained by max-
-5 dB. Threshold region is between -18 and -5 dB. No in- imizing the beamformer power output over values of the pa-
formation region is below -18 dB. rameter 0 in some search region 6:

the Cram6r-Rao bound leads to falsely optimistic estimates OCBF = arg flaxCBF(O)GeEe
of the SNR required to achieve acceptable performance. As H

can be seen in Fig. 2, if the linear part of the MSE curve is = arg•aeE WGBF(0)RWGBF(G) (1)
extended all the way across the figure, the intersection with 9 GAP = arg max CAP(9)
the acceptable performance line would occur around -40 dB GEe
SNR, much lower than the more accurate estimate of- 10 dB = arg max wCAP(0 ) fwCAP(0)

required SNR that takes global errors into account. GE1

Clearly, then, quantifying MFP localization performance = arg max v0lf-' vo) (2)
is a challenging problem. What is needed is accurate thresh- GEe

old region MSE performance prediction that takes into ac- where the CBF weight vector WCBF(0) = V/ IVo12 is sim-
count all of the following: ambiguities in the MFP range- ply a scaled version of the steering vector vo at 0 and the
depth beampattern (that lead to global errors at low SNR's), CAP weight vector is a function of the sample covariance:
signal model mismatch, colored noise, and finite-sample ef-
fects (for adaptive beamformers). Previous methods that WGAP(0) = f'v 0 / (vHft-ilv) (3)
account for global errors have involved calculating bounds

which give only approximate performance predictions in the The maximum likelihood estimate for the stochastic sig-
threshold region [2, 7] or have focused on (non-adaptive) nal model described above may be derived in the case where



the underlying covariance R is known but the SNR is un- is the dominant pairwise error probability Pe in the union
known. The MLE is given by bound. Substituting (7) into (6) gives the form of MIE used

here.
9

MLE = arg max [MF (0) - log (MF (0))] (4) Using MIE thus requires two algorithm-specific quan-
0Ee

tities: the asymptotic MSE, MSEaSYIU, and the pairwise

where the matched filter output WHMF(e) RWMF(G) is a func- error probability Pe, The expressions for MSEaSym are pre-
tion of the matched filter weight viously established results. For MLE, MSEaSYm is given

by the familiar Cram6r-Rao bound (CRB), which may be

WMF() = Rlv/vHRv. (5) computed using the Slepian-Bangs formula and depends onR-1 and the vector partial derivative with respect to pa-
Note that (5) depends on knowledge of the underlying noise rameter 0, Ov8 /60. For CAP and CBF, the expressions for
covariance R. , which cannot be estimated in passive sonar MSEaSYm can be derived using Taylor series expansions
because signal-free training data is never available. Thus, of the beamformer output power about the source location
the MLE serves mainly as a benchmark for MFP perfor- Otrue = 0, and are given in works by Vaidyanathan and
mance in this paper. Note, however, that the MLE is equiv- Buckley (VB) [6] and Hawkes and Nehorai (HN) [3], re-
alent to CBF in the case of white noise (R. = I) and known spectively. Both expressions depend on the data R, the first
covariance. derivative Ov 8 /09, and the second derivative 6 2 v 8 /09 2 ,

and the VB expression also depends on the third deriva-

2.2. Method of Interval Errors tive 03Vs/00 3 . Because MFP steering vectors are super-
positions of normal mode functions that are environment-

The method of interval errors decomposes the expression dependent, the vector derivatives cannot be represented an-
for mean-squared error into two conditional probabilities, alytically and must be computed numerically using finite
that an interval error (TE) has occurred or that no interval er- differences. For the results presented in this paper, it was
ror (NIE) has occurred, "interval error" being synonymous found that a step size of 0.01 m was sufficient to compute
with "global error": the numerical vector derivatives accurately for both range

(2} and depth. (Note that the derivatives need only be computed

F 9 - Grue)~ at the source location.)

The important results that allow application of MIE to
=Pr (NIE) E -Orue NIE both CAP and CBF are the pairwise error probabilities Pe

recently derived by Richmond [4] for CAP and CBF. Again,
f( )IE2 EIF Pe represents the probability that the beamformer power at

some location Om will exceed that power at the true source

[ N_0 location Otrue = Os. The procedure for computing p e for
[1 - p ( m) x MSEaym CAP is as follows (the derivation is found in [4]):

= 11. Define the N x 2 matrix V = [vmIvs] , where vm is
N2 the steering vector corrsponding to the sidelobe peak

+ > p (0=0m) X (Grn-- Grue)
2 

, (6) Onthencompute the QR-decompositionofR'/ 2 V,
m=O

where MSEaSY, represents the asymptotic (high-SNR) MSE R- 12V [ 0N2)x2

and the set {9m}ZN-i represent parameter values correspond- and let d, and d 2 denote the two 2 x 1 columns of D.
ing to Nm sidelobepeaks in the beampattern. As seen in Eq.
(6), MIE approximates the probability of a global error by 2. Compute the eigenvalues of the 2 x 2 matrix d 2dH -
recognizing that in the threshold region, global errors will d1 dH and denote the eigenvalues as A1 and A2.
almost always occur at sidelobe peaks in the beampattem.
This approximation, which turns out to be highly accurate
under a wide variety of conditions, turns what would be a Pe = 0.5" [1 + sgn (A1 )]
continuous integral into a finite sum. A further savings is -sgn (A1) . Y (-A 2/A1 , L - N + 2) ,
attained by employing a union bound approximation: (8)

P 9m) PPe =P(BF(9m)> BF(Gtrue)) , (7) where

where BF (0) is the beamformer power at position 0 (e.g., 7 (x, NO) A xN2No -1 E.x+N-
CAP (0) or CBF (0)), and where the right-hand side of (7) (1± x)2N°-1 k + No )



is the cumulative distribution function for a special Mean-Squared Error for Depth
case of the complex central F statistic. 20

To compute Pe for CBF, follow the same procedure as above
with the following modifications: replace R-1/ 2 by R1/ 2  10 .. Acepable•" ' Performance
in Step 1, use the 2 x 2 matrix d4id' - d 2d H (instead of

d2 - did') to compute the eigenvalues A, and A2 in 
_c5tb

Step 2, and replace L - N + 2 by L in Step 3. 0 0
U)

3. SIMULATION RESULTS U"-10 -* CFSimulation

0 CBF MIE Predict.
The simulation results that follow are for a horizontal line -15 -x- Capon Simulation
array with N = 41 elements and 15 m spacing (total aper- 0 Capon MIE Predict.

ture 600 m). The array was assumed straight and its depth 0 - -201-50 -40 -30 -20 -10 0 10
was assumed to be 100 m. MFP replicas were generated Phone Level SNR (dB)

using the KRAKEN normal mode model for an environ-
ment near the Santa Barbara channel, with depth 568 m Figure 4: MFP mean-squared error for depth estimation ver-

and downward-refracting sound speed profile. Beamformer sus SNR for signal in white noise (no mismatch) scenario.

outputs (from which MFP range and depth estimates were
derived) were computed over a search interval of 2-10 km
range and 1-101 m depth, at endfire. Beamformer outputs MSE for CBF and CAP (as a function of phone-level SNR)

were generated using a sample covariance R with L = 60 to MSE curves generated from 4000 Monte Carlo runs at

snapshots (L P 1.5N). each SNR point. MIviE predictions for both range and depth
and both CBF and CAP are accurate for all SNR's, but most

Mean-Squared Error for Range importantly the predictions are accurate within 1-2 dB in
40 the threshold region. Note that in the absence of interferers,

CBF/MLE outperforms CAP because CAP suffers losses

30 .Acceptable due to finite-sample adaptive training. Boundaries on ac-
- - - - -__erformtan e _ ceptable values of MSE were taken nominally to be 500•, Prformace

Pro0 m in range (i.e., significantly better than the mainlobe range
-20.

E resolution of range-focused beamforming at the same fre-
/ quency, P 2.5 km at 2 km range) and 10 m in depth (i.e.,

enough to enable discrimination of surface and submergedci -sources). 
Note again that these boundaries fall well within

)cn 0 - CBF Simulation the threshold region for both range and depth. Thus, pre-

0 CBF MIE Predict. dicting the threshold region MSE well is vital to predicting
-0 x-- Capon Simulation the required phone-level SNR (denoted SNRr here) for ac-

-10 ____Capon MIE Predict. ceptable MFP localization. In Fig. 3, SNRr is P -14.5 dB

-50 -40 -30 -20 -1 10 20 30 for CBF and P -11 dB for CAP, while in Fig. 4, SNRr is
P -17.8 dB for CBF and P -14.8 dB for CAP.

Figure 3: MFP mean-squared error for range estimation Because MIE predictions are based on the beampattern

versus phone-level SNR for signal in white noise (no mis- of a source at a specific location, it is important to under-

match) scenario, stand how performance varies as source location varies. To
do this, one may re-compute the curves of Figs. 3 and 4

In the first simulation, a 50 Hz endfire source was placed for each source range and depth in the search space, derive

at 6 km range and 25 m depth and the noise was assumed to SNRr for both range and depth, and use the higher of the two

be white (R, = 1) and Gaussian with power 2= 70 dB. SNRr values as the overall SNRr at a given source location.

In tFor CBF in the current scenario, this procedure reveals a 3-In th e w hite noise case, param eter estim ates derived from5 dB v r ai n n N o e th r ng - p h s a ch p c .
CBF and from MLE are identical. Figs. 3 and 4 show the 5 dB variation in SNRr over the range-depth search space.
prediction results for estimation of MFP range and depth, Frevues of SNcrpt one canibackootbthedsorceblevrespctiely' Te reult copar th I~iE peditios J els required for acceptable MFP localization by adding backrespectively.' The results compare the MI/E predictions of

1 In this paper, range and depth were estimated separately, with the other taneous estimation of range and depth, but simulating the latter is much

parameter assumed known. MIE has a straightforward extension to simul- more time-consuming.



the noise level of 70 dB and the predicted transmission loss matched case (depth estimation performance was very sim-
(TL) at each source location. 2 This computation is shown in ilar). Note that the mismatch causes a slight degradation
Fig. 5 for CBF. Note that the source levels shown in Fig. 5 in performance in the threshold region and an asymptotic
are reflective of the ideal nature of this scenario, white noise bias of P 4 m (5 dB). Importantly, however, the threshold
and no mismatch.

Mean-Squared Error for Range
35

20 • 114 1

112 30 -
- - -- Acceptable

E 4025 110 M Localization

S. 108 E
0 60 106 "20

, --*I- CBF Simulation
80 104 0 CBF MIE Predict.'El •15 -x- Capon Simulation

102 Capon MIE Predict.

2 4 6 8 10 10
Range (kin)

Figure 5: Required source levels for acceptable MFP local- 5

ization using CBF, as function of source range and depth. Phone Levl SNR (dB)

Gray scale units are dB re: 1 pPa/Hz.
Figure 6: MFP mean-squared error for range estimatiion
versus SNR for mismatched signal in white noise scenarioWhen signal model mismatch is introduced into the prob- (mismatch of 10 m/s in compressional sound speed).

lem, the MIE procedure needs to be modified to account for

the possibility that 9 may never converge even asymptoti-
cally (with increasing SNR) to Otrue [4]. Most often, 9 will region predictions are still accurate within 1-2 dB for both

CBF and CAP. Because this scenario again involved whiteconverge to some mismatched value 9
MM and there will

be an asymptotic bias in MSE equal to lotr'e - OMM 12 noise, CBF still outperformed CAP because of the adaptive
To account for this, one needs to compute MSEa,,ym us- training losses incurred by CAP.
Tog accountuforthisondte needsmatocomued MSetr av mm u- Finally, one can apply the modified MIE procedure for
ing the true d ata R and tcthd vector v MM (COr- the mismatch case to the colored noise (discrete interferer)
responding to location GMM). Further, the necessary error scenario, for cases where R,, is fixed (but not white) and
probabilities Pe describing the transition to the threshold re- where all discrete interferers are located outside the search
gion are now derived from the competition of the local side- region. 3 In the specific problem examined here, Rn =
lobe peaks of the "mismatched beampattern" (computed by a1ddH + o]'I, where d represents the steering vector of a
taking normalized inner products of the mismatched steer- distant interferer and where the interferer power a is held

ing vector with the true source vector) with the peak mis- constant while the signal power ds (and thus the signal-to-

matched vector VMM. ambient-noise ratio [SANR]) varies. Constant power for

Thus, the modified MIE expression for MSE is given distant inteferers is not unusual for passive sonar data, so

by (6) and (7), except with OMM replacing Otrue in the pair- thistis a case of interest.

wise error probabilities and with MSEaSyin computed using In this colored noise case, MSE performance for very

VMM instead of the true source vector v,. The interval er- hi s wll mir e asym ptorein of tewi

ror is still computed relative to Otrue in order to reflect the nise case, because the asy domin an paramete

actual accounting of MSE. And the error probabilities are estimates will be near the signal location. As the signal

still computed using the procedure detailed in the previous power o (and thus the SANR) decreases, the signal-to-
section, with vMM replacing vs in Step 1. interference ratio o /od will decrease and the interferer will

In the second simulation, a mismatch in compressional become more influential, with increasing likelihood that pa-
sound speed of 10 m/s was introduced into the propagation rameter estimates will be near the largest sidelobe of the

model (true value was 1572, mismatched value was 1562); interfeerr within the search space (recall that the interferer

for this case, the noise was still white. Fig. 6 shows the itself, d, is located outside the search space). Denote the

prediction results for estimation of MFP range in the mis-
3 If interferers are located within the search region, then the problem

2
The MFP propagation model gives TL for each phone in the array, becomes a muhti-source parameter estimation problem. MIE with slight

and one can use the root-mean-squared of all the phone TL's to derive an modification still produces accurate performance predictions in this case,

overall "array TL" at a given source location, as detailed in [4].



steering vector associated with this largest interferer side- diction was shown to be accurate within 1-2 dB in the thresh-
lobe as Vd. Then the analogous threshold region MSE per- old region for both MFP range and depth and for both the
formance can be derived by following the same procedure CBF and Capon-MVDR (CAP) beamformers. Accurate thresh-
as in the mismatch case outlined above, with Vd replacing old region predictions in turn lead to better estimates of
VMM. The added complication here is that the SANR de- the SNR's (and, equivalently, the source levels) required for
pendence of the "colored beampattem" (computed by tak- acceptable MFP localization. These accurate threshold re-
ing normalized output of the beamformer weights with the gion predictions for both CBF and CAP were made possible
data, both computed using ideal covariances) needs to be by application of new pairwise error probability results to
accounted for. the established method of interval errors (MIE) technique.

For the third scenario, an interferer was introduced at Slight modification of the basic MIE procedure also enables
20 km range, 5 m depth, and 10' bearing, with power c= accurate threshold region prediction in the cases of signal
66.8 dB (corresponding to 150 dB source level). Fig. 7 model mismatch and colored noise, as was demonstrated in
shows the prediction results for estimation of MFP range separate simulation examples.
in the colored case (depth estimation performance was very It is important to note that because MIE is situation-
similar). Note that with the introduction of the interferer, specific (for example, one needs to hypothesize a mismatch
CBF is no longer equivalent to MLE, and CBF performance mechanism for the signal model mismatch case), defini-
is degraded significantly, by about 10 dB SNR relative to the tive quantification of MFP localization performance will re-
white noise case. CBF still outperforms CAP in the asymp- quire systematic analysis repeating the above simulations
totic region (where behavior is like the white noise case), over several reasonable mismatch and interference scenar-
but the adaptive CAP now outperforms CBF in the thresh- ios. Future work may also extend the techniques presented
old region, where adaptive interference rejection becomes here to the case where sources are moving during the obser-
more beneficial. Note that threshold region performance for vation interval.
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* Boundary for acceptable MFP performance often occurs in
threshold region = must predict threshold region accurately

Method of Interval Errors
SHow? Beamformers: Accurate MFP

Capon-MVDR (adaptive) Pairwise Error Threshold RegionCap (non-M Radaptive) Probabilities Performance
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